低温等离子光触媒催化VOC技术分析(优缺点)
时间: 2024-07-18 19:13:55 | 作者: 大气常压等离子清洗机
产品介绍
主营产品:VOC在线监测,油烟在线监测,扬尘在线监测仪,大气网格化,空气质量监测系统
当前位置:首页产品文章低温等离子光触媒催化VOC技术分析(优缺点)
吸附技术是利用有较大比表面积的固体吸附剂将废气中的VOC捕获,从而使有害成分从气体中分离出来,当吸附达到饱和后采用水蒸气或热风等作为脱附剂,将吸附剂表面的VOC 脱附并加以回收。
冷凝技术是利用气态污染物具有不一样的饱和蒸气压,通过降低温度或加大压力,使 VOC 冷凝成液滴 而从气体中分离出来,借助不同的冷凝温度实现污染 物的逐步分离。
膜分离技术利用不一样气体分子通过高分子膜的 溶解扩散速度不同,在很多压力下实现分离目的。膜两侧气体的分压差是膜分离的驱动力,可通过压缩进 气或在膜渗透侧用真空泵来实现,因此,膜分离过程 常常与冷凝或压缩过程集成。
直接燃烧技术根据热量的回收方式,可分为直接焚烧法和蓄热焚烧法。直接焚烧法即将有机废气加热到一定温度下( 800℃左右),使其完全氧化分解,生成 CO
O 等。蓄热焚烧法即将燃烧尾气中的热量蓄积,用于加热待处理废气,节能 效果明显,此方法的去除效率可达99% 以上,但燃 烧不完全时易产生氮氧化物,造成二次污染,该法适用于汽车、家电等烤漆行业高温和高浓度的有机废气治理。
催化燃烧技术通过在燃烧系统中添加催化剂,使可燃性的VOC在催化剂表面发生非均相氧化反应,于300~500 ℃左右将VOC 催化氧化分解为 CO2 和 H2O 等。催化燃烧较热力焚烧温度低,可以明显降低设备正常运行费用,但当废气中含有能够引起催化剂中毒的硫、卤素有机化合物时,不宜采用催化燃烧法
纳米TiO2光触媒催化降解具有纳米半导体粒子的量子尺寸效应使其导带和价带能级变为三能级,能隙变宽,导带变负,而价带宽变得更正,即在光触媒催化作用下具有很强的氧化还原能力,从而提高了其光触媒催化活性。
波长较短的紫外线其光子能量zuiqiang,当环境中的紫外光能量等级比大多数废气物质的分子结合能强时,可将污染物分子键裂解为呈游离状态的离子,且波长在200nm以下的短波长紫外线(经过大量的实验验证,选用波长185nm)。
呈游离状态的污染物离子极易与O3产生氧化反应,生成简单、低害或无害的物质,如 CO2、H2O 等,以达到废气净化处理的目的。用紫外光解方式获得的臭氧,因获得复合离子光子的能量后,能极为迅速地分解,分解后产生氧化性更强的自由基O、OH和H2O。
自由基 O、OH 和 H2O 与恶臭气体发生一系列协同、连锁反应,恶臭气体zui终被氧化降解为低分子物质、CO2 和 H2O,而达到zui终的除臭目的。研究过程中,进一步发现当恶臭气体的相对分子质量越大时,紫外光解氧化效果就越明显。在特种能量等级的紫外线作用下,大多数化学物质都能得到GX分解。
生物降解技术即将含VOC的废气经传质过程,进入微生物悬液或生物膜中,在好氧条件下利用GX降解菌种将废气中的 VOC降解为 CO2 和 H2O 等。生物法净化VOC 废气的关键在于微生物的驯化及GX降解菌的培养。
目前研究出的生物菌种对有机物的消化具有很强的专一性,只能处理包括醇类、醛类、酮类、酯类、单环芳烃以及氨和硫化氢等单组分且易生物降解的有机化合物,其对单一 VOC 去除能力的大小顺序为:醇、醛、酮等含氧烃类 BTEX 等单环芳香烃 卤代烃,对单组分单环芳烃去除能力的大小顺序为:甲苯 苯 乙苯或二甲苯 氯苯或二氯苯。在处理混合组分的 VOC 时,由于各组分间存在的竞争和YZ作用会出现降解歧视现象,因此,生物法治理有机废气的普适性较差。
低温等离子体高能态的粒子构成低温等离子体高能态的粒子构成。低温等离子体降解VOCs原理在外电场的作用下,介质放电产生的大量携能电子轰击 VOC 分子,使其电离解离和激发、引发系列复杂的物理化学反应,使复杂的大相对分子质量的有机废气降解为简单的小相对分子质量物质,或是有毒有害物质转化为无毒无害或低害的物质,从而使VOC降解去除。携能电子的平均能量约10eV,适当控制反应条件可实现一般难以实现或速度很快的化学反应。
低温等离子体光催化协同技术具有其他净化技术不可比拟的优点,低温等离子体法处理 VOC 的技术与传统方法相比具有很多优点:一是,可在常温常压下操作;二是,有机化合物zui终的产物为 CO2,CO,H2O。若有机物是氯代物,则产物中还应加上氯化物,而无中间产物降低了,有机物的毒性,同时避免了其他方法中的后期处理问题;三是,运行的成本低;四是;VOC的去除率高,对 VOC的适应性运行管理比较方便。
针对工业上气量大,浓度低,且污染物大都无回收价值的制造业有机废气 VOC,需要有一种更有效、彻底、操作更简便的处理方法,zui大限度地减少运行条件的限制,低温等离子体法的出现正是为了顺应这种要求,并慢慢的受到国内外的重视。随着研究的不断深入,低温等离子体光催化法必将向着规模化方向发展。
①本网刊载以上内容,并不意味着本网赞同其观点或证实其内容的真实性,不承担此类作品侵犯权利的行为的直接责任及连带责任
②若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
仪器网(仪器拼音域名网址,简单,易懂,好记,可信;符合仪器用户的记忆和使用习惯,是仪器选型采购的专业平台。销售电线综合业务VIP会员售后VIP会员销售仪器求购